On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions

نویسندگان

  • YUE YANG
  • D. I. PULLIN
چکیده

For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t =0 remain so for t > 0. In this study, a systematic methodology is developed for constructing smooth scalar fields φ(x, y, z, t =0) for Taylor–Green and Kida– Pelz velocity fields, which, at t =0, satisfy ω · ∇φ=0. We refer to such fields as vortex-surface fields. Then, for some constant C, iso-surfaces φ=C define vortex surfaces. It is shown that, given the vorticity, our definition of a vortex-surface field admits non-uniqueness, and this is presently resolved numerically using an optimization approach. Additionally, relations between vortex-surface fields and the classical Clebsch representation are discussed for flows with zero helicity. Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and viscous incompressible flows. Both uniqueness and the distinction separating the evolution of vortex-surface fields and Lagrangian fields are discussed. By tracking φ as a Lagrangian field in slightly viscous flows, we show that the well-defined evolution of Lagrangian surfaces that are initially vortex surfaces can be a good approximation to vortex surfaces at later times prior to vortex reconnection. In the evolution of such Lagrangian fields, we observe that initially blob-like vortex surfaces are progressively stretched to sheet-like shapes so that neighbouring portions approach each other, with subsequent rolling up of structures near the interface, which reveals more information on dynamics than the iso-surfaces of vorticity magnitude. The non-local geometry in the evolution is quantified by two differential geometry properties. Rolled-up local shapes are found in the Lagrangian structures that were initially vortex surfaces close to the time of vortex reconnection. It is hypothesized that this is related to the formation of the very high vorticity regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows

In order to investigate continuous vortex dynamics based on a Lagrangian-like formulation, we develop a theoretical framework and a numerical method for computation of the evolution of a vortex-surface field (VSF) in viscous incompressible flows with simple topology and geometry. Equations describing the continuous, timewise evolution of a VSF from an existing VSF at an initial time are first r...

متن کامل

The boundary-constraint method for constructing vortex-surface fields

Submitted for the DFD16 Meeting of The American Physical Society The boundary-constraint method for constructing vortex-surface fields1 SHIYING XIONG, YUE YANG, Peking Univ — We develop a boundaryconstraint method for constructing the vortex-surface field (VSF) in a threedimensional fluid velocity field. The isosurface of VSF is a vortex surface consisting of vortex lines, which can be used to ...

متن کامل

Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers

Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...

متن کامل

Random Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula

In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...

متن کامل

Experimental stabilisation of 2D vortex patterns using time-dependent forcing

Experimental results of the effect of time-periodic and “chirped” (electro-magnetic) forcing on vortex patterns in shallow-water-layer flows are presented. Analogously to vibrational control, the use of a time-periodic forcing results in stabilisation of otherwise unstable vortex patterns. Chirped frequency forcing yields self-organising patterns that are different from those in stationary and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010